ค่าเฉลี่ยเคลื่อนที่โดยใช้ชุดข้อมูลแบบเดิมค่าเฉลี่ยหมายถึงค่าสถิติแรกที่เป็นประโยชน์และมีประโยชน์มากที่สุดแห่งหนึ่งในการคำนวณ เมื่อข้อมูลอยู่ในรูปแบบของชุดเวลาซีรี่ส์หมายถึงการวัดที่เป็นประโยชน์ แต่ไม่ได้สะท้อนถึงลักษณะพลวัตของข้อมูล ค่าเฉลี่ยที่คำนวณจากช่วงสั้น ๆ ก่อนหน้าช่วงเวลาปัจจุบันหรือตรงกลางในช่วงเวลาปัจจุบันมักมีประโยชน์มากกว่า เนื่องจากค่าเฉลี่ยดังกล่าวจะแปรผันหรือเคลื่อนย้ายเนื่องจากระยะเวลาปัจจุบันจะเคลื่อนที่จากเวลา t 2, t 3 เป็นต้นเรียกว่าค่าเฉลี่ยเคลื่อนที่ (Mas) ค่าเฉลี่ยเคลื่อนที่โดยเฉลี่ยคือ (โดยปกติ) ค่าเฉลี่ยที่ไม่มีการถัวเฉลี่ยของค่าก่อนหน้า k ค่าเฉลี่ยเคลื่อนที่แบบถ่วงน้ำหนักแบบเลขยกกำลังเป็นหลักเหมือนกับค่าเฉลี่ยเคลื่อนที่โดยเฉลี่ย แต่มีส่วนร่วมกับค่าเฉลี่ยที่ถ่วงน้ำหนักโดยความใกล้ชิดกับเวลาปัจจุบัน เนื่องจากไม่มีตัวอักษร แต่เป็นชุดค่าเฉลี่ยเคลื่อนที่ทั้งหมดสำหรับชุดใดก็ตามชุดของ Mas สามารถถูกจัดวางลงบนกราฟวิเคราะห์เป็นชุดและใช้ในการสร้างแบบจำลองและการคาดการณ์ ช่วงของแบบจำลองสามารถสร้างโดยใช้ค่าเฉลี่ยเคลื่อนที่และเป็นที่รู้จักในรูปแบบ MA ถ้าโมเดลดังกล่าวรวมกับโมเดลอัตถิภาวนิยม (AR) รูปแบบคอมโพสิตที่เป็นที่รู้จักกันในชื่อ ARMA หรือ ARIMA (แบบบูรณาการ) ค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายเนื่องจากชุดเวลาสามารถถือได้ว่าเป็นชุดของค่า, t 1,2,3,4, n ค่าเฉลี่ยของค่าเหล่านี้สามารถคำนวณได้ ถ้าเราคิดว่า n มีขนาดใหญ่มากและเราเลือกจำนวนเต็ม k ซึ่งน้อยกว่า n เราสามารถคำนวณชุดค่าเฉลี่ยบล็อกหรือค่าเฉลี่ยเคลื่อนที่ที่สั้น ๆ (ของคำสั่ง k): แต่ละค่าจะแสดงค่าเฉลี่ยของค่าข้อมูลในช่วงเวลาสังเกตการณ์ k โปรดทราบว่า MA ที่เป็นไปได้ครั้งแรกของคำสั่ง k GT0 คือสำหรับ t k โดยทั่วไปเราสามารถลด subscript พิเศษในนิพจน์ด้านบนและเขียนได้: ค่านี้ระบุว่าค่าเฉลี่ยที่เวลา t เป็นค่าเฉลี่ยที่ง่ายของค่าที่สังเกตได้ ณ เวลา t และขั้นตอน k-1 ก่อนหน้า ถ้าใช้น้ำหนักที่ลดการมีส่วนร่วมของการสังเกตที่ไกลออกไปในเวลาค่าเฉลี่ยเคลื่อนที่จะกล่าวได้ว่าเป็นแบบเรียบ ค่าเฉลี่ยเคลื่อนที่มักใช้เป็นรูปแบบของการคาดการณ์โดยที่ค่าประมาณสำหรับชุดในเวลา t 1, S t1 ถูกนำมาเป็น MA สำหรับระยะเวลาถึงและรวมถึงเวลา t เช่น. การประมาณในปัจจุบันคำนวณจากค่าเฉลี่ยที่บันทึกไว้ก่อนหน้านี้และรวมถึงวันวาน (สำหรับข้อมูลรายวัน) ค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายสามารถเห็นได้ว่าเป็นรูปแบบการทำให้เรียบ ในตัวอย่างที่แสดงด้านล่างชุดข้อมูลมลพิษทางอากาศที่แสดงในบทนำสู่หัวข้อนี้ได้รับการเพิ่มขึ้นโดยเส้นค่าเฉลี่ยเคลื่อนที่ 7 วัน (MA) ซึ่งแสดงเป็นสีแดง ที่สามารถมองเห็นได้สาย MA ช่วยให้จุดสูงสุดและรางในข้อมูลเป็นไปอย่างราบรื่นและเป็นประโยชน์ในการระบุแนวโน้ม สูตรคำนวณการคำนวณล่วงหน้าหมายถึงจุดข้อมูล k -1 จุดแรกไม่มีค่า MA แต่หลังจากนั้นการคำนวณจะขยายไปยังจุดข้อมูลสุดท้ายในชุดข้อมูล ค่าเฉลี่ยของวัน PM10 แหล่งที่มาของ Greenwich: London Air Quality Network, londonair. org. uk เหตุผลหนึ่งในการคำนวณค่าเฉลี่ยเคลื่อนที่แบบง่ายๆในลักษณะที่อธิบายไว้คือค่าที่คำนวณได้สำหรับช่วงเวลาทั้งหมดตั้งแต่เวลา tk ขึ้นไปจนถึงปัจจุบันและ เป็นวัดใหม่ที่ได้รับสำหรับเวลา t 1, MA สำหรับเวลา t 1 สามารถเพิ่มไปยังชุดที่คำนวณแล้ว นี่เป็นขั้นตอนง่ายๆสำหรับชุดข้อมูลแบบไดนามิก อย่างไรก็ตามมีบางประเด็นเกี่ยวกับแนวทางนี้ มีเหตุผลที่จะยืนยันว่าค่าเฉลี่ยในช่วง 3 ช่วงสุดท้ายกล่าวคือควรตั้งอยู่ที่เวลา t -1 ไม่ใช่เวลา t และสำหรับ MA มากกว่าจำนวนคู่ของระยะเวลาบางทีมันควรจะอยู่ที่จุดกึ่งกลางระหว่างสองช่วงเวลา วิธีแก้ปัญหานี้คือการใช้การคำนวณ MA ซึ่งอยู่ตรงกลางซึ่ง MA ในเวลา t เป็นค่าเฉลี่ยของชุดสมมาตรของค่ารอบ t แม้จะมีประโยชน์อย่างเห็นได้ชัด แต่วิธีนี้ใช้ไม่ได้โดยทั่วไปเนื่องจากต้องการข้อมูลที่พร้อมใช้งานสำหรับเหตุการณ์ในอนาคตซึ่งอาจจะไม่ใช่กรณีนี้ ในกรณีที่การวิเคราะห์ทั้งหมดเป็นชุดที่มีอยู่การใช้ Mas ไว้ตรงกลางอาจเป็นที่นิยมกว่า ค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายอาจถือได้ว่าเป็นรูปแบบหนึ่งของการปรับให้เรียบลบองค์ประกอบความถี่สูงบางส่วนของชุดเวลาและเน้นแนวโน้ม (แต่ไม่ลบ) ในลักษณะเดียวกันกับแนวคิดทั่วไปของการกรองแบบดิจิทัล แท้จริงค่าเฉลี่ยเคลื่อนที่คือรูปแบบของตัวกรองเชิงเส้น คุณสามารถใช้การคำนวณค่าเฉลี่ยเคลื่อนที่เป็นชุดที่ได้รับการปรับให้เรียบขึ้นแล้วเช่นการทำให้เรียบหรือกรองชุดที่เรียบขึ้นไปแล้ว ตัวอย่างเช่นมีค่าเฉลี่ยเคลื่อนที่ของลำดับที่ 2 เราสามารถพิจารณาว่าคำนวณโดยใช้น้ำหนักดังนั้น MA ที่ x 2 0.5 x 1 0.5 x 2 ในทำนองเดียวกัน MA ที่ x 3 0.5 x 2 0.5 x 3 ถ้าเรา เราใช้ 0.5 x 2 0.5 x 3 0.5 (0.5 x 1 0.5 x 2) 0.5 (0.5 x 2 0.5 x 3) 0.25 x 1 0.5 x 2 0.25 x 3 เช่นการกรองแบบ 2 ขั้นตอน กระบวนการ (หรือ convolution) ได้สร้างค่าเฉลี่ยเคลื่อนที่แบบสมมาตรที่มีการถ่วงน้ำหนักที่มีการเปลี่ยนแปลงโดยมีน้ำหนัก หลาย convolutions สามารถผลิตค่าเฉลี่ยเคลื่อนที่ถ่วงน้ำหนักค่อนข้างซับซ้อนซึ่งบางส่วนมีการใช้งานเฉพาะในสาขาพิเศษเช่นในการคำนวณการประกันชีวิต ค่าเฉลี่ยเคลื่อนที่สามารถใช้ในการลบเอฟเฟ็กต์เป็นระยะ ๆ หากคำนวณด้วยระยะเวลาเป็นระยะ ๆ ตามที่ทราบ ตัวอย่างเช่นเมื่อมีข้อมูลรายเดือนข้อมูลตามฤดูกาลสามารถเปลี่ยนแปลงได้โดยการใช้ค่าเฉลี่ยเคลื่อนที่ 12 เดือนที่สมมาตรกับทุกเดือนที่มีการถ่วงน้ำหนักอย่างเท่าเทียมกันยกเว้นกรณีที่ 1 และครั้งสุดท้ายที่มีการถ่วงน้ำหนักด้วย 12 เนื่องจากมี เป็นเวลา 13 เดือนในรูปแบบสมมาตร (ปัจจุบัน, t. - 6 เดือน) ทั้งหมดถูกแบ่งโดย 12 ขั้นตอนที่คล้ายกันสามารถนำมาใช้สำหรับระยะเวลาที่กำหนดไว้อย่างชัดเจน ค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนัก (Expedential Weighted Moving Average - EWMA) โดยใช้สูตรค่าเฉลี่ยเคลื่อนที่แบบง่ายๆ: การสังเกตทั้งหมดมีการถ่วงน้ำหนักอย่างเท่าเทียมกัน ถ้าเราเรียกว่าน้ำหนักเท่ากันนี้อัลฟา t แต่ละ k น้ำหนักจะเท่ากับ 1 k ดังนั้นผลรวมของน้ำหนักจะเป็น 1 และสูตรจะเป็น: เราได้เห็นแล้วว่าการใช้งานหลายขั้นตอนนี้ส่งผลให้น้ำหนักที่แตกต่างกัน ด้วยค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนักแบบยกกำลังให้ความสำคัญกับค่าเฉลี่ยจากการสังเกตที่ถูกลบออกไปในเวลามากขึ้นจะลดลงด้วยเหตุนี้จึงเน้นเหตุการณ์ที่เกิดขึ้นเมื่อเร็ว ๆ นี้ โดยทั่วไปจะมีการปรับค่าพารามิเตอร์การให้ราบเรียบ alpha lt1 ll1 และสูตรที่ได้รับการแก้ไขไปเป็น: รูปแบบสมมาตรของสูตรนี้จะมีรูปแบบดังนี้: ถ้าน้ำหนักในรูปแบบสมมาตรถูกเลือกเป็นเงื่อนไขของข้อกำหนดของการขยายตัวแบบทวินาม (1212) 2q พวกเขาจะรวมกันเป็น 1 และเมื่อ q กลายเป็นขนาดใหญ่จะใกล้เคียงกับการแจกแจงแบบปกติ นี่คือรูปแบบของการถ่วงน้ำหนักของเคอร์เนลโดยมีฟังก์ชัน Binomial ทำหน้าที่เป็นฟังก์ชันเคอร์เนล การแกว่งสองขั้นตอนที่อธิบายไว้ในหมวดย่อยก่อนหน้านี้คือการจัดเรียงนี้อย่างแม่นยำด้วย q 1 ซึ่งให้น้ำหนัก ในการทำให้เรียบเรียบขึ้นจำเป็นต้องใช้ชุดของน้ำหนักที่รวมกันเป็น 1 และลดขนาดทางเรขาคณิต น้ำหนักที่ใช้มีรูปแบบดังนี้: เพื่อแสดงให้เห็นว่าน้ำหนักเหล่านี้รวมกันเป็น 1 ให้พิจารณาการขยายตัวเป็น 1 เป็นชุด เราสามารถเขียนและขยายนิพจน์ในวงเล็บโดยใช้สูตรทวินาม (1- x) p. โดยที่ x (1-) และ p -1 ซึ่งจะให้: ค่านี้จะให้รูปแบบของค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนักของแบบฟอร์ม: ผลรวมนี้สามารถเขียนเป็นความสัมพันธ์ที่เกิดขึ้นใหม่ซึ่งช่วยลดความซับซ้อนในการคำนวณและหลีกเลี่ยงปัญหาที่ระบบการถ่วงน้ำหนัก ควรมีความยาวไม่ จำกัด สำหรับน้ำหนักที่จะรวมกันเป็น 1 (สำหรับค่าอัลฟ่าเล็กน้อยนี่ไม่ใช่กรณีปกติ) สัญกรณ์ที่ใช้โดยผู้เขียนที่แตกต่างกันจะแตกต่างกันออกไป บางตัวใช้ตัวอักษร S เพื่อระบุว่าสูตรเป็นตัวแปรที่มีความราบเรียบและเขียนว่า: ในขณะที่ทฤษฎีวรรณคดีควบคุมมักใช้ Z แทน S แทนค่าที่ถ่วงน้ำหนักหรือเรียบง่าย (ดูตัวอย่างเช่น Lucas and Saccucci, 1990, LUC1 , และเว็บไซต์ NIST สำหรับรายละเอียดเพิ่มเติมและตัวอย่างการทำงาน) สูตรที่อ้างถึงข้างต้นมาจากผลงานของ Roberts (1959, ROB1) แต่ Hunter (1986, HUN1) ใช้การแสดงออกของรูปแบบ: ซึ่งอาจเหมาะสมกว่าสำหรับการใช้ในขั้นตอนการควบคุมบางอย่าง ด้วยค่า alpha 1 ค่าประมาณเฉลี่ยคือค่าที่วัดได้ (หรือมูลค่าของรายการข้อมูลก่อนหน้า) ด้วยค่าประมาณ 0.5 ค่าเฉลี่ยของค่าเฉลี่ยเคลื่อนที่ของการวัดในปัจจุบันและก่อนหน้า ในรูปแบบการคาดการณ์ S t. มักใช้เป็นประมาณการหรือค่าพยากรณ์ในช่วงเวลาต่อไปนั่นคือค่าประมาณสำหรับ x ณ เวลา t ดังนั้นเราจึงได้แสดงให้เห็นว่าค่าพยากรณ์ที่ t 1 เป็นค่าเฉลี่ยเคลื่อนที่แบบถ่วงน้ำหนักแบบ บวกกับส่วนประกอบที่แสดงถึงข้อผิดพลาดในการทำนายถ่วงน้ำหนักเอปไซลอน เวลา t สมมติว่ามีชุดเวลาและต้องมีการคาดการณ์ค่าอัลฟาต้อง นี้สามารถประมาณจากข้อมูลที่มีอยู่โดยการประเมินผลรวมของข้อผิดพลาดการทำนายกำลังสองได้รับกับค่าที่แตกต่างของ alpha สำหรับแต่ละ t 2,3 การกำหนดค่าแรกที่จะเป็นค่าข้อมูลที่สังเกตได้ครั้งแรก x 1. ในแอ็พพลิเคชันควบคุมค่าของอัลฟามีความสำคัญในการใช้ในการกำหนดขีด จำกัด การควบคุมด้านบนและด้านล่างและมีผลต่อระยะเวลาในการทำงานโดยเฉลี่ย (ARL) ก่อนที่ข้อ จำกัด ในการควบคุมเหล่านี้จะเสีย (ภายใต้สมมติฐานว่าชุดข้อมูลเวลาเป็นชุดของตัวแปรอิสระที่แจกแจงแบบกระจายเดียวกันซึ่งมีความแปรปรวนร่วมกัน) ภายใต้สถานการณ์เช่นนี้ความแปรปรวนของสถิติการควบคุม: คือ (ลูคัสและ Saccucci, 1990): ขีด จำกัด ของการควบคุมมักจะตั้งค่าเป็นทวีคูณที่คงที่ของความแปรปรวนของการไม่ทำงานนี้เช่น - ค่าเบี่ยงเบนมาตรฐาน 3 เท่า ถ้าตัวอย่างเช่น alpha 0.25 และข้อมูลที่ได้รับการตรวจสอบจะถือว่ามีการแจกแจงแบบปกติ N (0,1) เมื่ออยู่ในการควบคุมขีด จำกัด ของการควบคุมจะเป็น - 1.134 และกระบวนการนี้จะถึงหนึ่งหรือขีด จำกัด อื่น ๆ ใน 500 ขั้นตอน โดยเฉลี่ย. Lucas และ Saccucci (1990 LUC1) ได้รับค่า ARLs สำหรับค่า alpha และภายใต้สมมติฐานต่างๆโดยใช้กระบวนการ Markov Chain พวกเขาจัดทำเป็นตารางผลลัพธ์รวมถึงการให้ ARLs เมื่อค่าเฉลี่ยของกระบวนการควบคุมได้รับการเปลี่ยนแปลงโดยค่าเบี่ยงเบนมาตรฐานหลายค่าหลายค่า ตัวอย่างเช่นเมื่อมีการเปลี่ยนแปลง 0.5 กับ alpha 0.25 ค่า ARL จะน้อยกว่า 50 ขั้นตอนเวลา วิธีการที่อธิบายข้างต้นเป็นที่รู้จักกันในชื่อเดียวเรียบ เป็นขั้นตอนที่ใช้ครั้งเดียวกับชุดเวลาและจากนั้นการวิเคราะห์หรือการควบคุมกระบวนการจะดำเนินการในชุดข้อมูลที่เกิดเรียบ หากชุดข้อมูลมีส่วนประกอบของเทรนด์ตามฤดูกาลหรืออาจใช้การทำให้เรียบแบบทวีคูณแบบสองขั้นตอนหรือสามขั้นตอนเพื่อลบลักษณะเหล่านี้ (ดูเพิ่มเติมส่วนของการพยากรณ์อากาศด้านล่างและตัวอย่างการทำงานของ NIST) CHA1 Chatfield C (1975) การวิเคราะห์ไทม์ซีรี่ส์: ทฤษฎีและการปฏิบัติ แชปแมนและฮอลล์, ลอนดอน HUN1 เธ่อเจเอส (1986) ค่าเฉลี่ยถ่วงน้ำหนักแบบเลขยกกำลัง J ของ Quality Technology, 18, 203-210 LUC1 Lucas J M, Saccucci M S (1990) แผนการควบคุมค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนักแบบทวีคูณ: สมบัติและการเพิ่มประสิทธิภาพ Technometrics, 32 (1), 1-12 ROB1 Roberts S W (1959) การควบคุมแผนภูมิการทดสอบขึ้นอยู่กับค่าเฉลี่ยเคลื่อนที่ทางเรขาคณิต Technometrics, 1, 239-250 ข้อมูลการขจัดความสยดสยองจะนำรูปแบบที่สุ่มออกและแสดงแนวโน้มและส่วนประกอบแบบวนรอบที่มีอยู่ในการรวบรวมข้อมูลที่เกิดขึ้นเมื่อเวลาผ่านไปคือรูปแบบของรูปแบบที่สุ่ม มีวิธีการลดการยกเลิกผลกระทบเนื่องจากรูปแบบสุ่ม เทคนิคที่มักใช้ในอุตสาหกรรมคือการทำให้เรียบ เทคนิคนี้เมื่อนำมาประยุกต์ใช้อย่างถูกต้องจะแสดงให้เห็นถึงแนวโน้มขององค์ประกอบตามฤดูกาลและวัฏจักรที่ชัดเจนยิ่งขึ้น มีสองวิธีที่เรียบง่ายในการทำให้เรียบวิธีการคำนวณค่าเฉลี่ยวิธีการหาค่าความสม่าเสมอการใช้ค่าเฉลี่ยเป็นวิธีที่ง่ายที่สุดในการทำให้ข้อมูลราบรื่นก่อนอื่นเราจะตรวจสอบวิธีการเฉลี่ยบางอย่างเช่นค่าเฉลี่ยทั่วไปของข้อมูลที่ผ่านมาทั้งหมด ผู้จัดการคลังสินค้าต้องการทราบว่าผู้จัดจำหน่ายทั่วไปให้บริการเท่าไรใน 1,000 ดอลลาร์ Heshe ใช้ตัวอย่างของซัพพลายเออร์จำนวน 12 รายโดยสุ่มได้ผลลัพธ์ดังนี้: ค่าเฉลี่ยหรือค่าเฉลี่ยของข้อมูล 10. ผู้จัดการตัดสินใจที่จะใช้ค่านี้เป็นค่าประมาณสำหรับค่าใช้จ่ายของผู้จัดจำหน่ายทั่วไป นี่คือการประมาณการที่ดีหรือไม่ดีข้อผิดพลาดหมายถึงกำลังสองเป็นวิธีที่จะตัดสินว่ารูปแบบที่ดีอย่างไรเราจะคำนวณความคลาดเคลื่อนกำลังสองเฉลี่ย จำนวนเงินที่ใช้จ่ายจริงลบด้วยจำนวนเงินโดยประมาณ ข้อผิดพลาด squared คือข้อผิดพลาดข้างต้นยกกำลังสอง SSE คือผลรวมของข้อผิดพลาดสี่เหลี่ยม MSE เป็นค่าเฉลี่ยของข้อผิดพลาดสี่เหลี่ยม ผลลัพธ์ที่ได้คือ MSE ข้อผิดพลาดและข้อผิดพลาดในแบบสี่เหลี่ยมประมาณ 10 คำถามที่เกิดขึ้น: เราสามารถใช้ค่าเฉลี่ยในการคาดการณ์รายได้ได้ถ้าเราสงสัยว่าเทรนด์ A ดูกราฟด้านล่างแสดงให้เห็นอย่างชัดเจนว่าเราไม่ควรทำเช่นนี้ ค่าเฉลี่ยของการสังเกตทั้งหมดในอดีตโดยสรุปเราระบุว่าค่าเฉลี่ยหรือค่าเฉลี่ยเฉลี่ยของการสังเกตทั้งหมดในอดีตเป็นเพียงประมาณการที่เป็นประโยชน์สำหรับการคาดการณ์เมื่อไม่มีแนวโน้ม หากมีแนวโน้มให้ใช้ค่าประมาณต่างๆที่คำนึงถึงแนวโน้ม ค่าเฉลี่ยถ่วงน้ำหนักการสังเกตการณ์ในอดีตอย่างเท่าเทียมกัน ตัวอย่างเช่นค่าเฉลี่ยของค่า 3, 4, 5 คือ 4. เรารู้แน่นอนว่าค่าเฉลี่ยคำนวณโดยการเพิ่มค่าทั้งหมดและหารผลรวมตามจำนวนค่า อีกวิธีหนึ่งในการคำนวณค่าเฉลี่ยคือการเพิ่มแต่ละค่าหารด้วยจำนวนค่าหรือ 33 43 53 1 1.3333 1.6667 4. ตัวคูณ 13 เรียกว่าน้ำหนัก โดยทั่วไป: bar frac sum left (frac right) x1 left (frac right) x2,. ,, left (frac right) xn. 1.2.1 Moving Average Models (MA models) โมเดลเวลาแบบอนุกรมที่เรียกว่า ARIMA models อาจรวมถึงข้อกำหนดแบบอัตโนมัติและหรือค่าเฉลี่ยเคลื่อนที่โดยเฉลี่ย ในสัปดาห์ที่ 1 เราได้เรียนรู้คำอัตโนมัติในรูปแบบชุดเวลาสำหรับตัวแปร x t เป็นค่า lag ของ x t ตัวอย่างเช่นคำจำกัดความที่ล่าช้า 1 คือ x t-1 (คูณด้วยสัมประสิทธิ์) บทเรียนนี้กำหนดคำศัพท์เฉลี่ยเคลื่อนที่ ค่าเฉลี่ยเคลื่อนที่ในรูปแบบของชุดเวลาเป็นข้อผิดพลาดที่ผ่านมา (คูณด้วยสัมประสิทธิ์) อนุญาต (wt overset N (0, sigma2w)) ซึ่งหมายความว่า w w จะเหมือนกันกระจายอย่างอิสระแต่ละอันมีการแจกแจงแบบปกติมีค่าเฉลี่ย 0 และค่าความแปรปรวนเดียวกัน รูปแบบการเคลื่อนที่โดยเฉลี่ยที่ 1 แสดงโดย MA (1) คือ (xt mu wt theta1w) รูปแบบการเคลื่อนที่โดยเฉลี่ยแบบที่ 2 แสดงโดย MA (2) คือ (xt mu wt theta1w theta2w) , แสดงโดย MA (q) คือ (xt หมู่น้ำหนักเบา theta1w theta2w จุด thetaqu) หมายเหตุ ตำราเรียนและโปรแกรมซอฟต์แวร์จำนวนมากกำหนดรูปแบบที่มีสัญญาณเชิงลบก่อนข้อกำหนด นี้ไม่ได้เปลี่ยนคุณสมบัติทางทฤษฎีทั่วไปของรูปแบบแม้ว่าจะไม่พลิกสัญญาณเกี่ยวกับพีชคณิตของค่าสัมประสิทธิ์ประมาณและเงื่อนไข (unsquared) ในสูตรสำหรับ ACFs และความแปรปรวน คุณจำเป็นต้องตรวจสอบซอฟต์แวร์ของคุณเพื่อตรวจสอบว่ามีการใช้เครื่องหมายเชิงลบหรือบวกในการเขียนแบบจำลองที่ถูกต้องหรือไม่ R ใช้เครื่องหมายบวกในโมเดลต้นแบบดังที่เราทำที่นี่ คุณสมบัติเชิงทฤษฎีของซีรี่ส์เวลากับแบบ MA (1) โปรดทราบว่าค่าที่ไม่ใช่ศูนย์เดียวใน ACF ทางทฤษฎีเป็นค่าความล่าช้า 1 autocorrelations อื่น ๆ ทั้งหมดเป็น 0 ดังนั้นตัวอย่าง ACF กับ autocorrelation อย่างมีนัยสำคัญเท่านั้นที่ล่าช้า 1 เป็นตัวบ่งชี้ของรูปแบบที่เป็นไปได้ MA (1) สำหรับนักเรียนที่สนใจการพิสูจน์คุณสมบัติเหล่านี้เป็นส่วนเสริมของเอกสารฉบับนี้ ตัวอย่างที่ 1 สมมติว่าแบบจำลอง MA (1) คือ x t 10 w t .7 w t-1 ที่ไหน (น้ำหนักเกิน N (0,1)) ดังนั้นค่าสัมประสิทธิ์ 1 0.7 ทฤษฎี ACF ได้รับโดยพล็อตของ ACF นี้ดังนี้ พล็อตที่แสดงให้เห็นคือทฤษฎี ACF สำหรับ MA (1) กับ 1 0.7 ในทางปฏิบัติตัวอย่างมักไม่ค่อยให้รูปแบบที่ชัดเจนเช่นนี้ ใช้ R เราจำลองค่า n 100 ตัวอย่างโดยใช้โมเดล x t 10 w t .7 w t-1 โดยที่ w t iid N (0,1) สำหรับการจำลองแบบนี้ข้อมูลพร็อพเพอร์ตี้ตามเวลาจะเป็นดังนี้ เราไม่สามารถบอกได้มากจากพล็อตนี้ ตัวอย่าง ACF สำหรับข้อมูลจำลองดังต่อไปนี้ เราจะเห็นการเพิ่มขึ้นของความล่าช้าที่ 1 ตามด้วยค่าที่ไม่ใช่นัยสำคัญสำหรับความล่าช้าในอดีต 1. โปรดทราบว่าตัวอย่าง ACF ไม่ตรงกับรูปแบบทางทฤษฎีของ MA ต้นแบบ (1) ซึ่งเป็นค่าความสัมพันธ์ระหว่างความล่าช้าทั้งหมดที่ผ่านมา 1 จะเป็น 0 ตัวอย่างที่แตกต่างกันจะมีตัวอย่าง ACF ที่แตกต่างกันเล็กน้อยที่แสดงด้านล่าง แต่อาจมีลักษณะกว้างเช่นเดียวกัน สมบัติทางทฤษฎีของแบบเวลากับแบบ MA (2) สำหรับแบบจำลอง MA (2) คุณสมบัติทางทฤษฎีมีดังต่อไปนี้: โปรดทราบว่าเฉพาะค่าที่ไม่ใช่ศูนย์ใน ACF ทางทฤษฎีเท่านั้นสำหรับการล่าช้า 1 และ 2 ค่าความสัมพันธ์กับความล่าช้าที่สูงขึ้นคือ 0 ดังนั้น ACF ตัวอย่างกับ autocorrelations อย่างมีนัยสำคัญที่ล่าช้า 1 และ 2 แต่ autocorrelations ที่ไม่สำคัญสำหรับความล่าช้าสูงแสดงให้เห็นถึงรูปแบบที่เป็นไปได้ MA (2) iid N (0,1) ค่าสัมประสิทธิ์คือ 1 0.5 และ 2 0.3 เนื่องจากนี่คือ MA (2) ทฤษฎี ACF จะมีค่าที่ไม่ใช่ศูนย์เฉพาะที่ล่าช้า 1 และ 2 ค่าของสอง autocorrelations ไม่ใช่ศูนย์เป็นพล็อต ACF ตามทฤษฎี เกือบตลอดเวลาเป็นกรณีตัวอย่างข้อมูลเคยชินทำงานค่อนข้างสมบูรณ์เพื่อเป็นทฤษฎี เราจำลองค่าตัวอย่าง 150 ตัวอย่างสำหรับรุ่น x t 10 w t .5 w t-1 .3 w t-2 โดยที่ w t iid N (0,1) พล็อตชุดข้อมูลตามลำดับ เช่นเดียวกับชุดข้อมูลอนุกรมเวลาสำหรับข้อมูลตัวอย่าง MA (1) คุณไม่สามารถบอกได้มากจากข้อมูลนี้ ตัวอย่าง ACF สำหรับข้อมูลจำลองดังต่อไปนี้ รูปแบบเป็นเรื่องปกติสำหรับสถานการณ์ที่โมเดล MA (2) อาจเป็นประโยชน์ มีสอง spikes ที่สำคัญอย่างมีนัยสำคัญที่ล่าช้า 1 และ 2 ตามด้วยค่าที่ไม่สำคัญสำหรับความล่าช้าอื่น ๆ โปรดทราบว่าเนื่องจากข้อผิดพลาดในการสุ่มตัวอย่างตัวอย่าง ACF ไม่ตรงกับรูปแบบทางทฤษฎีเลย ACF for General MA (q) Models คุณสมบัติของโมเดล MA (q) โดยทั่วไปคือมีความสัมพันธ์กับค่าที่ไม่ใช่ศูนย์สำหรับ q lags แรกและ autocorrelations 0 สำหรับ lags ทั้งหมด gtq ความไม่เป็นเอกลักษณ์ของการเชื่อมต่อระหว่างค่า 1 และ (rho1) ในรูปแบบ MA (1) ในรูปแบบ MA (1) สำหรับค่า 1 1 1 ซึ่งกันและกันให้ค่าเช่นเดียวกับตัวอย่างให้ใช้ 0.5 เป็นเวลา 1 จากนั้นใช้ 1 (0.5) 2 เป็นเวลา 1 คุณจะได้รับ (rho1) 0.4 ในทั้งสองกรณี เพื่อตอบสนองข้อ จำกัด ทางทฤษฎีที่เรียกว่า invertibility เรา จำกัด โมเดล MA (1) ให้มีค่าที่มีค่าสัมบูรณ์น้อยกว่า 1. ในตัวอย่างที่ให้ไว้เพียงแค่ 1 0.5 จะเป็นค่าพารามิเตอร์ที่ยอมให้ใช้ได้ในขณะที่ 1 10.5 2 จะไม่ ความผันแปรของรูปแบบ MA แบบจำลอง MA กล่าวได้ว่าเป็น invertible ถ้าเป็นพีชคณิตเทียบเท่ากับรูปแบบ AR อนันต์ converging โดยการบรรจบกันเราหมายถึงค่าสัมประสิทธิ์ของ AR ลดลงเป็น 0 เมื่อเราเคลื่อนที่ย้อนกลับไปในเวลา Invertibility คือข้อจํากัดที่ตั้งโปรแกรมเป็นซอฟต์แวร์ชุดเวลาที่ใช้ในการประมาณค่าสัมประสิทธิ์ของแบบจำลองที่มีเงื่อนไข MA ไม่ใช่สิ่งที่เราตรวจสอบในการวิเคราะห์ข้อมูล ข้อมูลเพิ่มเติมเกี่ยวกับข้อ จำกัด ด้านความสามารถในการซ่อนตัวของ MA (1) ได้รับในภาคผนวก ทฤษฎีขั้นสูงหมายเหตุ สำหรับแบบจำลอง MA (q) ที่มี ACF ที่ระบุมีรูปแบบที่มีการเปลี่ยนแปลงได้เพียงแบบเดียว เงื่อนไขที่จำเป็นสำหรับ invertibility คือสัมประสิทธิ์มีค่าเช่นว่าสมการ 1- 1 y - - q y q 0 มีคำตอบสำหรับ y ที่อยู่นอกวงกลมหน่วย R รหัสสำหรับตัวอย่างในตัวอย่างที่ 1 เราได้วางแผนทฤษฎี ACF ของโมเดล x t 10 w t 7w t-1 จากนั้นจำลองค่า n 150 จากแบบจำลองนี้และวางแผนตัวอย่างซีพียูและตัวอย่าง ACF สำหรับข้อมูลจำลอง คำสั่ง R ที่ใช้ในการวางแผน ACF ทางทฤษฎี ได้แก่ acfma1ARMAacf (mac (0.7), lag. max10) 10 ACL ล่าช้าสำหรับ MA (1) กับ theta1 0.7 lags0: 10 สร้างตัวแปรล่าช้าที่มีตั้งแต่ 0 ถึง 10 (h0) เพิ่มแกนนอนลงในพล็อตคำสั่งแรกกำหนด ACF และจัดเก็บไว้ในอ็อบเจกต์ (ACF) และจะมีการจัดเก็บข้อมูลไว้ในออปเจ็กต์ (acfma1, xlimc (1,10), ylabr, typeh, ACF หลักสำหรับ MA (1) ด้วย theta1 0.7) ชื่อ acfma1 (เลือกชื่อของเรา) พล็อตคำสั่ง (คำสั่งที่ 3) แปลงล่าช้ากับค่า ACF สำหรับล่าช้า 1 ถึง 10 พารามิเตอร์ ylab ตั้งชื่อแกน y และพารามิเตอร์หลักจะทำให้ชื่อเรื่องเป็นพล็อต หากต้องการดูค่าตัวเลขของ ACF เพียงแค่ใช้คำสั่ง acfma1 การจำลองและแปลงทำตามคำสั่งต่อไปนี้ xcarima. sim (n150 รายการ (mac (0.7))) เลียนแบบ n 150 ค่าจาก MA (1) xxc10 เพิ่ม 10 เพื่อให้ค่าเฉลี่ย 10. ค่าเริ่มต้นของการจำลองจะหมายถึง 0. plot (x, typeb, mainSimulated MA (1) data) acf (x, xlimc (1,10), mainACF สำหรับข้อมูลตัวอย่างจำลอง) ในตัวอย่างที่ 2 เราวางแผนใช้ทฤษฎี ACF ของโมเดล xt 10 wt .5 w t-1 .3 w t-2 จากนั้นจำลองค่า n 150 จากแบบจำลองนี้และวางแผนตัวอย่างซีพียูและตัวอย่าง ACF สำหรับข้อมูลจำลอง คำสั่ง R ใช้คือ acfma2ARMAacf (mac (0.5,0.3), lag. max10) acfma2 lags0: 10 พล็อต (ล่าช้า acfma2, xlimc (1,10), ylabr, typeh, ACF หลักสำหรับ MA (2) กับ theta1 0.5, theta20.3) abline (h0) xcarima. sim (n150 รายการ (mac (0.5, 0.3))) xxc10 พล็อต (x, typeb, หลักจำลองแมสซาชูเซตส์ (2) ซีรี่ส์) acf (x, xlimc (1,10), mainACF สำหรับข้อมูลจำลอง MA (2)) ภาคผนวก: การพิสูจน์คุณสมบัติของ MA (1) สำหรับนักเรียนที่สนใจนี่เป็นหลักฐานสำหรับคุณสมบัติทางทฤษฎีของโมเดล MA (1) ความแปรปรวน: (text (xt) text (mu wt theta1 w) ข้อความ 0 (wt) text (theta1w) sigma2w theta21sigma2w (1theta21) sigma2w) เมื่อ h 1 นิพจน์ก่อนหน้านี้ 1 w 2. สำหรับ h 2 ใด ๆ นิพจน์ก่อนหน้า 0 เหตุผลก็คือตามนิยามของความเป็นอิสระของน้ำหนัก E (w k w j) 0 สำหรับ k j ใด ๆ นอกจากนี้เนื่องจาก w t มีค่าเฉลี่ยเป็น 0, E (w j w j) E (w j 2) w 2 สำหรับซีรี่ส์เวลาให้ใช้ผลลัพธ์นี้เพื่อให้ได้ ACF ที่ระบุไว้ด้านบน รูปแบบแมสซาชูเซตแบบพลิกกลับเป็นแบบที่สามารถเขียนเป็นแบบจำลอง AR ที่ไม่มีที่สิ้นสุดซึ่งจะมาบรรจบกันเพื่อให้ค่าสัมประสิทธิ์ AR แปรผันไปที่ 0 เมื่อเราเคลื่อนตัวกลับในเวลาอนันต์ แสดงให้เห็นถึงความสามารถในการพลิกกลับของ MA (1) ได้ดี จากนั้นเราจะแทนความสัมพันธ์ (2) สำหรับ w t-1 ในสมการ (1) (3) (zt wt theta1 (z-theta1w) wt theta1z-theta2w) ณ เวลา t-2 สมการ (2) กลายเป็นเราแทนความสัมพันธ์ (4) สำหรับ w t-2 ในสมการ (3) (zt wt theta1 z - theta21w wt theta1z - theta21 (z - theta1w) wt theta1z - theta12z theta31w) ถ้าเราจะดำเนินการต่อ อนันต์) เราจะได้รับแบบอนุกรม AR อนันต์ (zt wt theta1 z - theta21z theta31z - theta41z จุด) หมายเหตุ แต่ที่ 1 1 สัมประสิทธิ์คูณความล่าช้าของ z จะเพิ่มขึ้น (อนันต์) ในขนาดที่เราย้ายกลับมา เวลา. เพื่อป้องกันปัญหานี้เราต้องใช้ 1 lt1 นี่เป็นเงื่อนไขสำหรับรูปแบบ MA (1) ที่มองไม่เห็น รูปแบบการสั่งซื้อ Infinite Order ในสัปดาห์ที่ 3 ให้ดูว่าแบบจำลอง AR (1) สามารถแปลงเป็นแบบจำลอง MA อนันต์: (xt - mu wt phi1w phi21w dots phik1 w counts sum phij1w) ข้อสรุปของคำพูดเสียงสีขาวที่ผ่านมาเป็นที่รู้จักกัน เป็นตัวแทนเชิงสาเหตุของ AR (1) กล่าวอีกนัยหนึ่ง x t เป็น MA ชนิดพิเศษที่มีจำนวนอนันต์ที่จะย้อนกลับไปในเวลา นี่เรียกว่าลำดับ MA หรือ MA () ที่ไม่มีขีด จำกัด คำสั่งที่แน่นอนคือแมสซาชูเซตส์อนันต์ลำดับ AR และคำสั่งใด ๆ ที่ จำกัด AR เป็นลำดับที่ไม่มีขีด จำกัด MA จำได้ว่าในสัปดาห์ที่ 1 เราสังเกตเห็นว่าข้อกำหนดสำหรับ AR (1) ที่หยุดนิ่งคือ 1 lt1 ให้คำนวณ Var (x t) โดยใช้การแทนสาเหตุ ขั้นตอนสุดท้ายนี้ใช้ข้อเท็จจริงพื้นฐานเกี่ยวกับชุดข้อมูลทางเรขาคณิตที่ต้องใช้ (phi1lt1) มิฉะนั้นชุดข้อมูลจะแตกต่างออกไป ทิศทางค่าเฉลี่ยเคลื่อนที่เฉลี่ยแรกคือ 4310 ซึ่งเป็นค่าสังเกตแรก (ในการวิเคราะห์อนุกรมเวลาตัวเลขแรกในชุดค่าเฉลี่ยเคลื่อนที่จะไม่ถูกคำนวณเป็นค่าที่หายไป) ค่าเฉลี่ยเคลื่อนที่ถัดไปคือค่าเฉลี่ยของการสังเกตแรกสอง (4310 4400) 2 4355 ค่าเฉลี่ยเคลื่อนที่ที่สามคือ ค่าเฉลี่ยของการสังเกต 2 และ 3, (4400 4000) 2 4200 และอื่น ๆ ถ้าคุณต้องการใช้ค่าเฉลี่ยเคลื่อนที่ของความยาว 3 ค่าสามค่าจะถูกแทนค่าเฉลี่ยสองค่า Copyright 2016 Minitab Inc. สงวนลิขสิทธิ์ เมื่อใช้ไซต์นี้ถือว่าคุณยอมรับการใช้คุกกี้สำหรับการวิเคราะห์และเนื้อหาในแบบของคุณ อ่านนโยบายของเรา
Comments
Post a Comment